Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene
نویسندگان
چکیده
منابع مشابه
Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene
Understanding the grain size-dependent failure behavior of polycrystalline graphene is important for its applications both structurally and functionally. Here we perform molecular dynamics simulations to study the failure behavior of polycrystalline graphene by varying both grain size and distribution. We show that polycrystalline graphene fails in a brittle mode and grain boundary junctions se...
متن کاملPseudo Hall-Petch strength reduction in polycrystalline graphene.
The fracture of polycrystalline graphene is explored by performing molecular dynamics simulations with realistic finite-grain-size models, emphasizing the role of grain boundary ends and junctions. The simulations reveal a ~50% or more strength reduction due to the presence of the network of boundaries between polygonal grains, with cracks preferentially starting at the junctions. With a larger...
متن کاملWhat is behind the inverse Hall–Petch effect in nanocrystalline materials?
An inverse Hall–Petch effect has been observed for nanocrystalline materials by a large number of researchers. This effect implies that nanocrystalline materials get softer as grain size is reduced below a critical value. Postulated explanations for this behavior include dislocation-based models, diffusion-based models, grain-boundary-shearing models and two-phase-based models. In this paper, w...
متن کاملNano-scale machining of polycrystalline coppers - effects of grain size and machining parameters
In this study, a comprehensive investigation on nano-scale machining of polycrystalline copper structures is carried out by molecular dynamics (MD) simulation. Simulation cases are constructed to study the impacts of grain size, as well as various machining parameters. Six polycrystalline copper structures are produced, which have the corresponding equivalent grain sizes of 5.32, 6.70, 8.44, 13...
متن کاملHall–Petch Behavior in Ultra-Fine-Grained AISI 301LN
An ultra-fine-grained AISI 301LN austenitic stainless steel has been achieved by heavy cold rolling, to induce the formation of martensite, and subsequent annealing at 800 C, 900 C, and 1000 C, from 1 to 100 seconds. The microstructural evolution was analyzed using transmission electron microscopy and the yield strength determined by tension testing. Ultra-fine austenite grains, as small as ~0....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep05991